Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.

Identifieur interne : 003640 ( Main/Exploration ); précédent : 003639; suivant : 003641

Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.

Auteurs : Elisson A C. Romanel [Brésil] ; Carlos G. Schrago ; Rafael M. Cou Ago ; Claudia A M. Russo ; Márcio Alves-Ferreira

Source :

RBID : pubmed:19503786

Descripteurs français

English descriptors

Abstract

BACKGROUND

The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily.

METHODOLOGY

In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family.

CONCLUSIONS

Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.


DOI: 10.1371/journal.pone.0005791
PubMed: 19503786
PubMed Central: PMC2688026


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.</title>
<author>
<name sortKey="Romanel, Elisson A C" sort="Romanel, Elisson A C" uniqKey="Romanel E" first="Elisson A C" last="Romanel">Elisson A C. Romanel</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro</wicri:regionArea>
<placeName>
<settlement type="city">Rio de Janeiro</settlement>
<region type="state">État de Rio de Janeiro</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schrago, Carlos G" sort="Schrago, Carlos G" uniqKey="Schrago C" first="Carlos G" last="Schrago">Carlos G. Schrago</name>
</author>
<author>
<name sortKey="Cou Ago, Rafael M" sort="Cou Ago, Rafael M" uniqKey="Cou Ago R" first="Rafael M" last="Cou Ago">Rafael M. Cou Ago</name>
</author>
<author>
<name sortKey="Russo, Claudia A M" sort="Russo, Claudia A M" uniqKey="Russo C" first="Claudia A M" last="Russo">Claudia A M. Russo</name>
</author>
<author>
<name sortKey="Alves Ferreira, Marcio" sort="Alves Ferreira, Marcio" uniqKey="Alves Ferreira M" first="Márcio" last="Alves-Ferreira">Márcio Alves-Ferreira</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19503786</idno>
<idno type="pmid">19503786</idno>
<idno type="doi">10.1371/journal.pone.0005791</idno>
<idno type="pmc">PMC2688026</idno>
<idno type="wicri:Area/Main/Corpus">003545</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003545</idno>
<idno type="wicri:Area/Main/Curation">003545</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003545</idno>
<idno type="wicri:Area/Main/Exploration">003545</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.</title>
<author>
<name sortKey="Romanel, Elisson A C" sort="Romanel, Elisson A C" uniqKey="Romanel E" first="Elisson A C" last="Romanel">Elisson A C. Romanel</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro</wicri:regionArea>
<placeName>
<settlement type="city">Rio de Janeiro</settlement>
<region type="state">État de Rio de Janeiro</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schrago, Carlos G" sort="Schrago, Carlos G" uniqKey="Schrago C" first="Carlos G" last="Schrago">Carlos G. Schrago</name>
</author>
<author>
<name sortKey="Cou Ago, Rafael M" sort="Cou Ago, Rafael M" uniqKey="Cou Ago R" first="Rafael M" last="Cou Ago">Rafael M. Cou Ago</name>
</author>
<author>
<name sortKey="Russo, Claudia A M" sort="Russo, Claudia A M" uniqKey="Russo C" first="Claudia A M" last="Russo">Claudia A M. Russo</name>
</author>
<author>
<name sortKey="Alves Ferreira, Marcio" sort="Alves Ferreira, Marcio" uniqKey="Alves Ferreira M" first="Márcio" last="Alves-Ferreira">Márcio Alves-Ferreira</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (chemistry)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis Proteins (chemistry)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Biological Evolution (MeSH)</term>
<term>Eukaryota (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Physiological Phenomena (MeSH)</term>
<term>Plant Proteins (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Zea mays (chemistry)</term>
<term>Zea mays (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (composition chimique)</term>
<term>Arabidopsis (génétique)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Duplication de gène (MeSH)</term>
<term>Eucaryotes (génétique)</term>
<term>Famille multigénique (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénomènes physiologiques des plantes (MeSH)</term>
<term>Protéines d'Arabidopsis (composition chimique)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines végétales (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Zea mays (composition chimique)</term>
<term>Zea mays (génétique)</term>
<term>Évolution biologique (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Protéines d'Arabidopsis</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Eukaryota</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Eucaryotes</term>
<term>Protéines d'Arabidopsis</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Evolution</term>
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Plant Physiological Phenomena</term>
<term>Plant Proteins</term>
<term>Protein Conformation</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Duplication de gène</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Phylogenèse</term>
<term>Phénomènes physiologiques des plantes</term>
<term>Protéines végétales</term>
<term>Structure tertiaire des protéines</term>
<term>Évolution biologique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY</b>
</p>
<p>In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19503786</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>11</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jun</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.</ArticleTitle>
<Pagination>
<MedlinePgn>e5791</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0005791</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily.</AbstractText>
<AbstractText Label="METHODOLOGY" NlmCategory="METHODS">In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Romanel</LastName>
<ForeName>Elisson A C</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schrago</LastName>
<ForeName>Carlos G</ForeName>
<Initials>CG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Couñago</LastName>
<ForeName>Rafael M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Russo</LastName>
<ForeName>Claudia A M</ForeName>
<Initials>CA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alves-Ferreira</LastName>
<ForeName>Márcio</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056890" MajorTopicYN="N">Eukaryota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018521" MajorTopicYN="N">Plant Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>12</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>04</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19503786</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0005791</ArticleId>
<ArticleId IdType="pmc">PMC2688026</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2002 Jul 12;297(5579):243-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Mar;27(3):435-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17968553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 Apr;16(4):404-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10869041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(6):1032-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16805735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):8007-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12808149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1995 May;40(5):482-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jan 15;22(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Sep 17;292(2):195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10493868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1997 Nov;124(22):4481-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Jul;2(7):e117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16789830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Feb;132(3):429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2006 Apr;15(4):900-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16522791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5012-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jun;16(6):738-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2004 Sep;7(3):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15363412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Jul 15;9(14):1679-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7622033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1992 Jun;8(3):275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1633570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16280546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Jun;38(6):706-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16682972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3660-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Nov;20(11):591-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):902-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2005 Sep;14(9):2478-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1997 Mar;6(3):698-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9070452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2256-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 11;96(10):5844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Oct;17(10):1483-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2006 Aug 25;2(8):e114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16933986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Oct;10(5):453-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17900969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 8;427(6970):159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14712276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):2104-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):91-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11806-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11573014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 May 9;16(9):939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16682356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007;7:130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2005 May 1;6(3):321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Oct;4(10):1251-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1359917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W36-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 Mar;46(3):394-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18272381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W604-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 8;428(6983):653-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1995 Dec;23(4):566-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8749853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Mar;21(5):401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10758492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8507-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7667320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 15;27(2):470-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Feb;131(2):401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1134-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2004 Feb;14(1):8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15040885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Nov;9(11):1963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9401121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Dec 14;294(5550):2351-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):418-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 May;55(2):221-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Apr 17;277(5):1141-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9571028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):276-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):747-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17905860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 May;54(4):608-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18476867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3448-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1360-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15829600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2002 Nov;11(11):2714-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12381853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Dec;13(12):647-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18986826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1658-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 May;219(1):158-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14767767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 May;9(5):799-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9165754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Sep 9;18(17):1338-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18718758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 May;37(5):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
</country>
<region>
<li>État de Rio de Janeiro</li>
</region>
<settlement>
<li>Rio de Janeiro</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Alves Ferreira, Marcio" sort="Alves Ferreira, Marcio" uniqKey="Alves Ferreira M" first="Márcio" last="Alves-Ferreira">Márcio Alves-Ferreira</name>
<name sortKey="Cou Ago, Rafael M" sort="Cou Ago, Rafael M" uniqKey="Cou Ago R" first="Rafael M" last="Cou Ago">Rafael M. Cou Ago</name>
<name sortKey="Russo, Claudia A M" sort="Russo, Claudia A M" uniqKey="Russo C" first="Claudia A M" last="Russo">Claudia A M. Russo</name>
<name sortKey="Schrago, Carlos G" sort="Schrago, Carlos G" uniqKey="Schrago C" first="Carlos G" last="Schrago">Carlos G. Schrago</name>
</noCountry>
<country name="Brésil">
<region name="État de Rio de Janeiro">
<name sortKey="Romanel, Elisson A C" sort="Romanel, Elisson A C" uniqKey="Romanel E" first="Elisson A C" last="Romanel">Elisson A C. Romanel</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003640 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003640 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19503786
   |texte=   Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19503786" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020